2,743 research outputs found

    First-passage dynamics of obstructed tracer particle diffusion in one-dimensional systems

    Full text link
    The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article we generalise this system and investigate first-passage properties of a tracer particle when flanked by crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates koffk_{\rm off} (konk_{\rm on}). The tracer particle is restricted to diffuse with rate kDk_D on the lattice. Such a model is relevant for the understanding of gene regulation where regulatory proteins are searching for specific binding sites ona crowded DNA. We quantify the first-passage time distribution, f(t)f(t) (tt is time), numerically using the Gillespie algorithm, and estimate it analytically. In terms of our key parameter, the unbinding rate koffk_{\rm off}, we study the bridging of two known regimes: (i) when unbinding is frequent the particles may effectively pass each other and we recover the standard single particle result f(t)t3/2f(t)\sim t^{-3/2} with a renormalized diffusion constant, (ii) when unbinding is rare we recover well-known single-file diffusion result f(t)t7/4f(t)\sim t^{-7/4}. The intermediate cases display rich dynamics, with the characteristic f(t)f(t)-peak and the long-time power-law slope both being sensitive to koffk_{\rm off}

    Aging dynamics in interacting many-body systems

    Full text link
    Low-dimensional, complex systems are often characterized by logarithmically slow dynamics. We study the generic motion of a labeled particle in an ensemble of identical diffusing particles with hardcore interactions in a strongly disordered, one-dimensional environment. Each particle in this single file is trapped for a random waiting time τ\tau with power law distribution ψ(τ)τ1α\psi(\tau)\simeq\tau^{-1- \alpha}, such that the τ\tau values are independent, local quantities for all particles. From scaling arguments and simulations, we find that for the scale-free waiting time case 0<α<10<\alpha<1, the tracer particle dynamics is ultra-slow with a logarithmic mean square displacement (MSD) x2(t)(logt)1/2\langle x^2(t)\rangle\simeq(\log t)^{1/2}. This extreme slowing down compared to regular single file motion x2(t)t1/2\langle x^2(t)\rangle\simeq t^{1/2} is due to the high likelihood that the labeled particle keeps encountering strongly immobilized neighbors. For the case 1<α<21<\alpha<2 we observe the MSD scaling x2(t)tγ\langle x^2(t)\rangle\simeq t^{\gamma}, where γ2\gamma2 we recover Harris law t1/2\simeq t^{1/2}.Comment: 5 pages, 4 figure

    Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting

    Full text link
    Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection and feed-forward, inclusion of ideal photon counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved "off-line," thereby permitting universal continuous-variable quantum computation with linear optics.Comment: 6 pages, no figures, replaced with published versio

    Energy-efficient polymeric gas separation membranes for a sustainable future: A review

    Get PDF
    AbstractOver the past three decades, polymeric gas separation membranes have become widely used for a variety of industrial gas separations applications. This review presents the fundamental scientific principles underpinning the operation of polymers for gas separations, including the solution-diffusion model and various structure/property relations, describes membrane fabrication technology, describes polymers believed to be used commercially for gas separations, and discusses some challenges associated with membrane materials development. A description of new classes of polymers being considered for gas separations, largely to overcome existing challenges or access applications that are not yet practiced commercially, is also provided. Some classes of polymers discussed in this review that have been the focus of much recent work include thermally rearranged (TR) polymers, polymers of intrinsic microporosity (PIMs), room-temperature ionic liquids (RTILs), perfluoropolymers, and high-performance polyimides

    An XMM-Newton observation of the galaxy group MKW 4

    Full text link
    We present an X-ray study of the galaxy group or poor cluster MKW 4. Working with XMM data we examine the distribution and properties of the hot gas which makes up the group halo. The inner halo shows some signs of structure, with circular or elliptical beta models providing a poor fit to the surface brightness profile. This may be evidence of large scale motion in the inner halo, but we do not find evidence of sharp fronts or edges in the emission. The temperature of the halo declines in the core, with deprojected spectral fits showing a central temperature of ~1.3 keV compared to ~3 keV at 100 kpc. In the central ~30 kpc of the group multi-temperature spectral models are required to fit the data, but they indicate a lack of gas at low temperatures. Steady state cooling flow models provide poor fits to the inner regions of the group and the estimated cooling time of the gas is long except within the central dominant galaxy, NGC 4073. Abundance profiles show a sharp increase in the core of the group, with mean abundance rising by a factor of two in the centre of NGC 4073. Fitting individual elements shows the same trend, with high values of Fe, Si and S in the core. We estimate that ~50% of the Fe in the central 40 kpc was injected by SNIa, in agreement with previous ASCA studies. Using our best fitting surface brightness and temperature models, we calculate the mass, gas fraction, entropy and mass-to-light ratio of the group. At 100 kpc (~0.1 virial radii) the total mass and gas entropy of the system (~2x10^13 Msol and ~300 keV cm^2) are quite comparable to those of other systems of similar temperature, but the gas fraction is rather low (~1%). We conclude that MKW 4 is a fairly relaxed group, which has developed a strong central temperature gradient but not a large-scale cooling flow.Comment: 17 pages, 9 postscript figures, accepted for publication in MNRA

    'Treatment of the Sportsman's groin': British Hernia Society's 2014 position statement based on the Manchester Consensus Conference

    Get PDF
    &lt;b&gt;Introduction&lt;/b&gt; The aim was to produce a multidisciplinary consensus to determine the current position on the nomenclature, definition, diagnosis, imaging modalities and management of Sportsman's groin (SG).&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt; Experts in the diagnosis and management of SG were invited to participate in a consensus conference held by the British Hernia Society in Manchester, UK on 11–12 October 2012. Experts included a physiotherapist, a musculoskeletal radiologist and surgeons with a proven track record of expertise in this field. Presentations detailing scientific as well as outcome data from their own experiences were given. Records were made of the presentations with specific areas debated openly.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; The term ‘inguinal disruption’ (ID) was agreed as the preferred nomenclature with the term ‘Sportsman's hernia’ or ‘groin’ rejected, as no true hernia exists. There was an overwhelming agreement of opinion that there was abnormal tension in the groin, particularly around the inguinal ligament attachment. Other common findings included the possibility of external oblique disruption with consequent small tears noted as well as some oedema of the tissues. A multidisciplinary approach with tailored physiotherapy as the initial treatment was recommended with any surgery involving releasing the tension in the inguinal canal by various techniques and reinforcing it with a mesh or suture repair. A national registry should be developed for all athletes undergoing surgery.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; ID is a common condition where no true hernia exists. It should be managed through a multidisciplinary approach to ensure consistent standards and outcomes are achieved

    Quantum nonlocality and applications in quantum-information processing of hybrid entangled states

    Get PDF
    The hybrid entangled states generated, e.g., in a trapped-ion or atom-cavity system, have exactly one ebit of entanglement, but are not maximally entangled. We demonstrate this by showing that they violate, but in general do not maximally violate, Bell's inequality due to Clauser, Horne, Shimony and Holt. These states are interesting in that they exhibit the entanglement between two distinct degrees of freedom (one is discrete and another is continuous). We then demonstrate these entangled states as a valuable resource in quantum information processing including quantum teleportation, entanglement swapping and quantum computation with "parity qubits". Our work establishes an interesting link between quantum information protocols of discrete and continuous variables.Comment: 5 pages, no figur

    First passage times for a tracer particle in single file diffusion and fractional Brownian motion.

    Get PDF
    We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm-defined by the Hurst parameter, H ∈ (0, 1)] is studied, of interest here as fBm and SFD systems belong to the same universality class. Extensive stochastic (non-Markovian) SFD and fBm simulations are performed and compared to two analytical Markovian techniques: the method of images approximation (MIA) and the Willemski-Fixman approximation (WFA). We find that the MIA cannot approximate well any temporal scale of the SFD FPTD. Our exact inversion of the Willemski-Fixman integral equation captures the long-time power-law exponent, when H ≥ 1∕3, as predicted by Molchan [Commun. Math. Phys. 205, 97 (1999)] for fBm. When H < 1∕3, which includes homogeneous SFD (H = 1∕4), and heterogeneous SFD (H < 1∕4), the WFA fails to agree with any temporal scale of the simulations and Molchan's long-time result. SFD systems are compared to their fBm counter parts; and in the homogeneous system both scaled FPTDs agree on all temporal scales including also, the result by Molchan, thus affirming that SFD and fBm dynamics belong to the same universality class. In the heterogeneous case SFD and fBm results for heterogeneity-averaged FPTDs agree in the asymptotic time limit. The non-averaged heterogeneous SFD systems display a lack of self-averaging. An exponential with a power-law argument, multiplied by a power-law pre-factor is shown to describe well the FPTD for all times for homogeneous SFD and sub-diffusive fBm systems
    corecore